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We derive several variational formulas for the topological entropy and SRB 
entropy of Axiom A flows on compact manifolds and for the Hausdorff 
dimension of basic sets for Axiom A diffeomorphisms on compact surfaces. 
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I N T R O D U C T I O N  

Topological and metric entropies and the Hausdorff  dimension of invariant 
hyperbolic sets are among the most important  global invariants of smooth 
dynamical systems. Topological entropy characterizes the total exponential 
complexity of the orbit structure with a single number. Metric entropy with 
respect to an invariant measure gives the exponential growth rate of the 
statistically significant orbits. The knowledge of entropies, especially in low 
dimensions, provides a wealth of quantitative structural information about 
the system. Such information includes the growth rate of periodic orbits, 
the existence of horseshoes, the growth rate of the volume of cells of 
various dimensions, ergodic components and factors with very stochastic 
behavior, etc. 

In this note, we derive variational formulas for the topological entropy 
and SRB entropy of Axiom A flows on compact manifolds and for the 
Hausdorff  dimension of basic sets for Axiom A diffeomorphisms on 
compact  surfaces. 
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All of these quantities are known to vary smoothly when the hyper- 
bolic system is smoothly perturbed. (2 7) This is surprising, since these 
quantities are defined in global asymptotic terms, and a priori, one does 
not expect them to change smoothly. Hyperbolicity is essential, for there 
exist examples where entropies are discontinuous. We conjecture that all 
global asymptotic quantities associated with a hyperbolic dynamical system 
vary smoothly when the system is smoothly perturbed. 

The variational formulas we derive are simple consequences of the 
methods of proof of smoothness of the above results using the thermo- 
dynamic formalism. For ease of exposition, we will state our results for 
Anosov flows, although the formulas apply to Axiom A flows with the 
obvious modifications. 

Since the proofs of the smooth dependence of the entropies and 
Hausdorff dimension are based on the thermodynamic formalism, we begin 
by recalling some essential facts about pressure. We advise the reader to 
consult ref. 10 for a good introduction to the mathematical theory of 
pressure and to refs. 1 and 9 for a thorough exposition of the role of the 
thermodynamic formalism in hyperbolic dynamics. 

Some Impor tant  Propert ies of Pressure (1~ 

Let ~b be a homeomorphism of a compact metric space X. 

(1) Let C(X) denote the space of continuous functions on Z. The 
quickest way to define the pressure of f e e ( x )  (with respect to the 
homeomorphism ~b) is via the variational principle 

P ~ ( f ) =  sup [h~(~b)+ f f dl~] 
/~ E ~q" 4 , 

where Jt/~ denotes the space of ~b-invariant Borel probability measures and 
hu(~b) denotes the measure-theoretic entropy of ~b with respect to some 
measure #. A measure /~ for which this sup is attained is called an 
equilibrium measure for f 

(2) Pressure is an analytic function on H61der continuous functions, 
i.e., P: C~(X) -~ ~ defined by f--, P~(f) is a real analytic function. H61der 
continuity is essential for this result. This result can be proved by showing 
that expP~(f)  is the maximal isolated eigenvalue for the associated 
transfer operator for ~b and then by applying standard results from pertur- 
bation theory. 

(3) Let ~b, 0 be homeomorphisms of compact metric spaces X, Y and 
let t/:X ~ Y be a topological equivalence (homeomorphism) between ~b and 
0, i.e., 0 =t/-lo~bor/. Then for geC(Y), Po(g)=P~(gotl).(l~ 
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(4) Let ~b be an Axiom A diffeomorphism of a compact manifold M 
having a basic set A. For  an Anosov diffeomorphism, A = M. Then for 
f, g, heC~(A), 

Po(f + eg + e2h)= g dpf 

where #y denotes the unique equilibrium measure for f.(9) This follows 
easily from our definition of pressure. 

We now derive the three variational formulas. 

1. TOPOLOGICAL ENTROPY FOR A N O S O V  FLOWS 

Let M be a compact manifold and let ~b~., -e~<2~<e, be a C ~ 
perturbation of a C ~ Anosov flow ~b t = ~b~. Let 

def 1 

denote the topological entropy of the time-1 map for the flow ~b~. In ref. 4 
the authors show that topological entropy varies (almost) as smoothly as 
the perturbation, i.e., the mapping hr :  ( - e ,  e ) ~  N is C g-1. In ref. 3 the 
authors derive several first derivative formulas for topological entropy. 
Below we derive another formula. 

Let us briefly recall the smoothness argument in ref. 4. First, choose a 
Markov partition for the unperturbed flow ~b t and then use the conjugating 
homeomorphisms from structural stability to build Markov partitions for 
the perturbed flows such that all flows are realized as special flows over the 
same base (ZA, 0-), where (Z.~, a) denotes a subshift of finite type. Denote 
by rj~ the return map between sections for ~b~, or equivalently, the roof 
function for the symbolic flow corresponding to ~b~. Our convention is that 
r = r0 = roof function for ~b t. The map r;~ is constructed using the maps from 
structural stability, which in ref. 4 were shown to depend smoothly on )~ in 
the C ~ topology. 

It is again an exercise using our definition of pressure (variational 
principle) to show that for the shift map a on Y.A, P~(-xr~)=O~ 
x=hT( 2 ) .  (4) Since pressure is an analytic function on C ~ functions, the 
mapping ( - e ,  e) • ~ ~ ~ defined by (2, x)-~ P~(-xr;.) is smooth. One 
now applies the implicit function theorem to conclude that the map 
hr: (-~, ~) ~ ~ is C k-~. Marl6 (4) has a clever argument to recover this last 
derivative and show that the mapping is C k. 

The following first derivative formula follows easily from this analysis: 
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T h e o r e m  1. First Derivative Formula for Topological Entropy. Let 
M be a compact manifold and let ~b~, - e  ~< 2 ~< e, be a C 2 perturbation of 
a C 2 Anosov flow ~b'. Then 

d h drx 
d-~ ~=o hT()~) = - 

where # denotes the --hr(O) r equilibrium measure for ~b'. 

Proof. Since P j - h r ( ) O  r).)=O, it follows that 

d ; . = o  Po(-hr(2)  r;.) ~ O 

Hence, 

d - [ h r ( 0 ) +  dhT(~) "~ O(~.2)1 

x [ r  2 dry[ 
-}-"-~" 2 = 0 -1"- 0 ( 2 2 ) ] )  

dr~ r dhr(2) 

It follows from Property 3 of pressure that 

Fh 0 d r 2 l  rdhr(2) LL + 

The formula follows immediately. | 

2. S R B  E N T R O P Y  FOR A N O S O V  F L O W S  

Let M be a compact manifold and let ~b~, - e ~< 2 ~< e, be a C k pertur- 
bation of a C k Anosov flow ~b'= ~b~. Let gSRB~, denote the SRB (Sinai- 
Ruelle-Bowen) measure associated to @~. (see ref. 1 for many characteriza- 
tions of this important physical measure). If ~b~ preserves a family of 
smooth measures (as in the case of geodesic flows on negatively curved 
manifolds), then the smooth measures are the SRB measures. Let 
hSRB(Jl, ) d___ef hSRB(~)~ ) denote the SRB entropy (measure-theoretic entropy 
with respect to the SRB measure) of the time-1 map of ~b~. By the struc- 
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tural stability of Anosov flows, there exist C ~ homeomorphisms h~ : M ~ M 
and time changes s;~ : ~ x M -~ ~ such that 

O~ 2xt' P) o h ~(p ) = h ~ o qY(p ) 

In refs. 5 and 6 the authors prove that for an important class of Anosov 
flows, the geodesic flows on negatively curved surfaces, the SRB entropy 
(Liouville entropy) varies as C 1+~ (for all e > 0 )  when the metric is 
smoothly perturbed. Extending the methods in ref. 4, Contreras, (2) using 
some ideas in ref. 7, showed that the SRB entropy changes (almost) as 
smoothly as the perturbation, i.e., the mapping hSRB: (--e, e)--, ~ is C k -  1 
By slightly modifying his argument, one can obtain a first derivative 
formula for the SRB entropy. 

Define functions 

Z~(x) = - l o g  [FD@~Jx) IE~(x)N, K;~(x) = - l o g  r]D~b~2~l,*)(x)[ey(~)]] 

where E~(x) denotes the unstable distribution of q~. at x. The functions Z;. 
and ~c;. have the same smoothness in x as the unstable distribution, which 
is typically only H61der continuous. By imitating the nonsmooth phase 
space behavior with a perturbation, the same is true for the smoothness 
in 2. Marl6 has shown the following amazing result: 

T h e o r e m .  (7"2) The maps ( - e ,  e) ~ C~(M) defined by 2 ---, Z;~ oh~ and 
2 ~ ~c~. o h~ are C k. 

Marl6 proves this by showing that the bundle E~. o h;. is the fixed point 
of the twisted graph transform 

which he shows depends smoothly on 2. 
The theme of Contreras' proof, which we slightly modify, is to pull all 

the dynamics back to qY. Let v;. be the ~b' equilibrium measure for ~c;~ o h~., 
i.e., 

P~,(rc;o h;.) = hv;(q~ 1 ) -b fM (l~;o h;.) dv;. 

where hv,(~b') denotes the measure-theoretic entropy of ~b~. with respect 
to v;. 

It follows from properties 2 and 4 of pressure that 

d 
P~,(~c;oh~+tOc;oh; . ) )=f  Oc;.oh;.)dv;. 

t = O  
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depends smoothly on 2. It also follows from property 3 of pressure and 
Pesin's entropy formula that 

P~(K;. o h~) = P~?~,*~(~c~) = 0 

Similarly, 

This implies that 

h~(~  ~) = h s . B ( ~ ?  ', * ~) 

hs..(~7 .(~'x~) = - f M (~c ~ o h ).) dv  z 

By Abramov's theorem, we have 

hsRs((9~;-(l'*))=hsRB(O~)f s).(1, x) d# sRs;. = - f  (K;oh;~)dv~ 
M M 

The following formula follows by differentiating the above expression: 

T h e o r e m  2. First Derivative Formula for SRB Entropy. Let M be 
a compact manifold and let ~b~, -a~<2~<e, be a C 2 perturbation of a C 2 
Anosov flow ~b t. Let/~SRB denote the SRB measure associated to ~b~, and let 
v~ be the ~b' equilibrium measure for x). o h~. Then 

d'2 d IM s~.(1, p) " SRn d hsR~()~) -- hSRB(0) d-~ ;.=o = a#;~ 
2 = 0  

= 0  

3. H A U S D O R F F  D I M E N S I O N  OF BASIC SETS 

Let f be an Axiom A surface diffeomorphism having a basic set A. 
Define functions 

ZU(x) = - l o g  LlOf(x)l ~u(x)LI, zS(x) = log I[Df(x)[ eS(x)l[ on A 

where E"(x) and ES(x) denote the unstable and stable distributions 
through x. McCluskey and Manning (8) gave an interpretation of the 
Hausdorff dimension HD(A) in terms of the pressure off ,  ZU(x), and zS(x). 
They showed that HD(A) = 6 ~ + 6s, where 6u and 6 ~ are the unique numbers 
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such that Py(6u)~ u) = 0 and P f (&Z ' )=  0. They also showed that c5" and 6 s, 
and hence H D ( A ) ,  vary continuously when f is smoothly perturbed. 

Let f2, - ~ < 2 ~ < e ,  be a C k perturbation of a C k AxiomA diffeo- 
m o r p h i s m f = f o  of a compact smooth surface M 2, and let A denote a basic 
set for f By structural stability of hyperbolic sets, there exist basic sets A~ 
for the maps f2, and homeomorphisms h2: A ~ A;~ such that on A, h 2 o f =  
f2 ~ h~. Let H D ( A ~ ) =  6"+~ 6~ denote the Hausdorff dimension of the basic 
set A 2. Marl6 (7) showed that the map 2 ~ HD(A;,)  is C k. 

We recall the heart of Mafi6's argument. (7) It follows from definitions 
and property 3 of pressure that 

u u tt ~ u  
0 = PixlA~(6~.Z2) = PSiA(~$2()f; o h2)) 

Recalling that pressure is an analytic function on H61der continuous 
functions, and recalling the theorem of Marl6 in the preceding section, it 
follows that the mapping ( - e ,  e )x  N - ,  N defined by (2, x ) - ~  P(x(g"~oh2)) 
is smooth, One now applies the implicit function theorem to conclude that 
6~ and 6~ depend smoothly on 2. 

The following variational formula follows immediately from his 
method of proof: 

T h e o r e m  3. First Derivative Formula for  Hausdor f f  Dimension. 
We have 

- -  6y.= - g "  dv ~ , ;(U dv u 
d2 2=0 2=0 

d ~ = _ 6  ~ zSdv , 
6/2 2=0 d2 ;.=o / A 

and hence 

d d 

d - ~  2 = 0  2 = 0  2 = 0  

where v" and v" are the equilibrium measures for f associated to 6";(" and 
6sZL 

P r o o f  o f  Theorem 3. The proof of Theorem 3 is also by direct 
calculation. Since P ( ( ~ ( z ~ o h 2 ) ) =  O, it obviously follows that 

ff--• P(6~(Z"xoh2))=O 
2 = 0  
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Hence,  

d . 
0=~-~  ~_oP( [6 ._  + 2 d 2  ;,=o+O(22)][Z~''d(z~~ - ~  ~=0+0(22)2 / 

It  follows from p rope r ty  3 of pressure  that  

( {  " d6:[ "~ 
6" d(z"~ h ')dX =o + Z dr~ &\ 

Theorem 3 follows immedia te ly .  | 
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